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Abstract. Systems with classical as well as quantal degrees of freedom are described. This 
is done by means of a relative Hamiltonian and a derivation satisfying a compatibility 
relation. Various equivalent equilibrium conditions are studied. 

1. Introduction 

Various rigorous definitions of thermodynamical equilibrium have been studied for 
about two decades. All these definitions avoid the thermodynamical limit and are 
immediately expressed in terms of conditions on the equilibrium states for the infinite 
system. 

The Dobrushin-Lanford-Ruelle equations were introduced for classical lattice 
systems [ 1,2] and the classical Kubo-Martin-Schwinger condition [3] for continuous 
classical systems equipped with a Poisson bracket structure. The DLR equations were 
later expressed [4,5] in terms of relative Hamiltonians. 

Parallel to these classical equilibrium conditions, one has the quantum KMS condi- 
tion [6]. These conditions existed and were applied in various problems and reformu- 
lated in different ways. A main aspect of the other formulations is that the KMS 

conditions are determined by a derivation. 
Various generalisations of both the DLR equations [7] and the KMS conditions [8] 

have been studied. Here we mention in particular those generalisations which had in 
mind a rephrasing of the K M S  and DLR equations such that they obey one and the 
same principle [8-lo]. An open problem is the study of the equilibrium condition for 
a coupled interacting system composed of a quantum and a classical system, or a 
quantum system with also classical degrees of freedom or vice versa. The object of 
this article is to develop the theoretical basis and the equilibrium conditions for the 
states of such systems. Recent examples of the type of systems we are studying are 
found in [ l l ]  and [12]. 

2. Preliminaries 

Consider YE the configuration space of the classical variables which we take to be a 
compact Hausdorff space for technical convenience and take sd to be a simple C* 
algebra describing the quantum degrees of freedom. The algebra of observables for 
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the composed system is taken to be the C* algebra 93 = %(X)@d of continuous 
functions A: x E X-, A(x) E d from X into d equipped with the norm 

IlAll = supllA(x)ll. 
X E X  

Denote by 9 a group of homeomorphisms of the configuration space YC acting in such 
a way that 2 separates the continuous functions %(X), i.e. the only invariant functions 
are the constant ones. For any r E 2, define i the induced action on $33 by 

(?A)( x) = A( T-’x) X E X ,  A E ~ .  

For classical systems the equilibrium states are determined by specifying a relative 
Hamiltonian. For quantum systems they are determined by a derivation describing 
the interactions. Here we treat composed systems. Therefore we should also include 
interactions between the classical and  quantum degrees of freedom. Hence we suppose 
that we are given a derivation 6 defined on a dense 9-invariant domain 9l0 satisfying 

6 ( A ) * =  -6(A*) 

S ( A B ) =  6 ( A ) B + A 6 ( B )  A , B € B  

h : T E  9 + h ( r )  E 9 0  

and a relative Hamiltonian h, i.e. a map h of 2 into 93, 

satisfying 

h ( T ) *  = h ( 7 )  

h(7172) = ? , h ( T J + h ( T I )  r l ,  r2 E 2. 

Furthermore h and 6 are connected to each other by the relation 

iai-1- 6 = [ h ( r ) ,  . I  T E 9 .  (3) 
To fix our  ideas we give the example of a Hamiltonian system on a lattice Z”. We 
take X= XK,Emu with K = (1,. . . , n }  and d the spin U H F  algebra: d = O I E k ~ M n  with 
M,,, the m x m complex matrices. An interaction is a set 4 = ((4,lAc Z’)} of elements 
4, of B. 

Suppose that the interaction is of finite range and  assume 

SUP 114,Il <a. 

The local Hamiltonians are then given by 

In this case the derivation 6 is given by 

6 ( A ) =  l imv[H. , ,A]  
.\-z 

where A is any local observable. In order to define the relative Hamiltonian we take 
for 9 the set of local transformations of X = X K J t Z ~ ,  i.e. 7 is a local transformation 
if there exists a finite A such that X , O = X K J E ,  is left invariant under 7. 

The relative Hamiltonian is then 

h ( r )  = lim ( i H , -  H,). (6) \-k” 

It is easily checked that the relations (1)-(3) hold. 
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The static Hubbard model, recently studied [ 111, is an example of these Hamiltonian 
systems described above. The local Hamiltonians are given by 

H,= C t ( i - j ) a : a , + 2 U  C a : a , W ( i )  
IJE \ I t  \ 

where the a, and  a: are the Fermion creation and annihilation operators and W ( i )  
takes the values 0 or 1. 

We remark also that it is possible to reconstruct local Hamiltonians from a given 
derivation and  a given relative Hamiltonian satisfying (1)-(3). 

3. Finite systems 

We refer to a finite system if the algebra of observables W is constructed by means of 
a configuration space Yt= (1,. . . , n }  consisting of a finite number of points and the 
algebra d = M,,  the set of m x m complex matrices. A state w of 93 is then described 
by a density matrix p E 93 such that 

w(A) = C Tr(p (x )A(x) )  A € %  
X E H  

with p ( x )  2 0 

C Tr( p ( x ) )  = 1. 
X 

A Hamiltonian is a self-adjoint element H *  = H of W, i.e. for all x E Y t :  H ( x ) *  = H ( x ) .  
As usual a canonical Gibbs state with Hamiltonian H at inverse temperature p is 

given by the state wp of 93 

As in ( 5 )  and (6) we denote 

6=[H;] 

h ( T ) = iH - H 

and then have the following theorem. 

Theorem 3.1. Let w be a state of the finite system with Hamiltonian H, then the 
following are equivalent: 

(i) w is a Gibbs state for H at inverse temperature p, 
( i i )  w satisfies the equilibrium conditions (EC)  equation that for all T E 9 and V E  W 

one has 

w ( i (  W*))  = U (  V*[exp(-prT)] V) (8) 

where I',(A) = ~ ( T - ' ) A + G ( A ) ,  A E  93, and 

V E  93 one has 
( i i i )  U satisfies the entropy-energy balance ( E E B )  inequality that for all T E 9 and 

p w [  v*( h (  T - ' )  V +  6 (  V))] 3 U (  V* V) h [ w (  V* V) /w(+(  W*))]. (9) 
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ProoJ: Suppose first that w = w p  (see ( 7 ) ) ,  then for all V E 3 and 7 E 2 : 

1 

z x  
up(?( W*))  =-I Tr[exp(-PH(x)) V ( ~ - ' ( X ) ) ~ ( T - ' ( X ) ) * ]  

1 

Z ,  
=- Tr[ V(x)* exp(-PH(Tx)) V(x)] 

= W [  V* exp(-pTT) VI 

where 2 = Z, Tr[exp(-PH(x))] and r, is the map of 93 defined by 

T,(A)(x)= H(Tx)A(x)  - A ( x ) H ( X )  A €  3. 

Hence 

T,(A) = ~ ( T - ' ) A + S ( A )  

and (i) implies (ii). 
Suppose now that w is a state satisfying ( i i ) .  For  identity transformation, 

equation (8) reduces to the K M S  condition for the derivation S, hence w 0 6 = 0. But 
this implies that for all 7 E 22 and A, B E  93: 

w(r , (A)*B) = o(A*T,(B)) .  

This means that r, defines a self-adjoint operator, which we denote again by I', on 
the GNs-Hilbert space 3 equipped with the scalar product 

(A, B )  = w(A*B). 

We remark that in general, r, is not Hermitian on 93. Then applying the Jensen 
inequality we obtain 

2 U (  V*V) exp[-Pw( V*T,( V ) ) / w (  V*V)] 

thus proving ( i i i ) .  

that 
Finally we prove that (iii) implies (i). We remark first that for V =  V*, (iii) implies 

w (  V6( V)) 5 0. 

Hence 

w (  V6( V)) = w (  VS( V)) 

w ( S ( v * ) ) = o .  

[ H ( x ) ,  p ( x ) l =  0 

or 

Therefore for all x = Yt 



Coupled classical-quantum systems 6041 

where p is the density matrix of the state w,  i.e. there exists an orthonormal basis 
{4, (x) i  i = 1,. . . , m }  diagonalising simultaneously H ( x )  and p(x) ,  

H(x)41 ( x )  = E ,  (x )4 ,  (x)  

P(X)4I(X) = p t ( x ) 4 , ( x ) .  

V ( X )  = ~ x , x ~ 1 4 , ( x l ) ~ ~ ~ , J ( x * ) I  

4x1)  = x2 4x2)  = XI 

Now we compute the p , ( x )  from (9) and substitute in the EEB inequality (9): 

where 6x,j is the Kronecker 6 and where ~ d l ( x l ) ) ( ~ , ( x 2 ) ~  is the partial isometry with 
domain 4J(x2)  and image +,(x,) .  Then 

s X ~ X ? I ~ , ( x ~ ) ) ( ~ J ( x ~ ) I  

; ( w * ) ( x )  = ~ x l x ~ 1 4 ~ ~ ~ l ~ ~ ~ 4 1 ~ ~ l ~ l  
V * ( h ( T - I )  V+ 6 (  V))(X) = 6xlx2(~l(xI) - ~j(x2))  I 4 , ( ~ ~ ) ) ( 4 , ( ~ ~ ) 1  

and from (9) 

P(EI(xI)-E,(x*))p,(x*) pJ('2) 'n(pJ(x>)/pt(xI)) '  ( l o a )  

Taking now 

v ( x ) =  s T I X ? /  4J(x2))(4t(xl)l 

we obtain 

P ('J ('2) - '2 (xl))pl ('1) PI ('1) In( PI )/pJ ('2))' ( lob)  

Suppose p, (x2) = 0, then from the inequality ( l o b )  it follows that p, (x , )  = 0 and this 
for all i = 1, . . . , n and x,  E YL Hence p = 0, but this is contradictory with Z, Tr( p(x) )  = 
1 .  Therefore for all j = 1, . . . , n and X ~ E  YC, pJ(xz) # 0. The inequalities ( l o a )  and 
( l o b )  then yield 

pJ(x2)/pl(xl) =exp[-p(EJ(XZ)-E,(XI))l  

or equivalently 

p J ( X 2 )  ~ X P ( P & , ( X ~ ) ) = P , ( X I )  exp(PE,(X1))=A 

where the parameter A is independent of the configurations x and of the indices i ,  j, 
and is fixed by the normalisation of the density matrix, yielding 

/ \ - 1  

As is well known, an equivalent characterisation of a Gibbs state is given by the 
variational principle. We denote the free energy of the state o with density matrix p as 

The Gibbs state wp is uniquely determined by the minimum principle 

F ( w , ) <  F ( w )  for all states W .  
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We now describe a n  alternative derivation of the E E B  inequality, explaining its physical 
meaning as expressing the balance between energy and  entropy increase under a 
dissipative perturbation of the equilibrium state. 

Lv,,(A)(x) = V(X)*A(T(X)) V ( x ) - f (  V ( x ) * V ( x ) A ( x ) + A ( x ) V ( x ) * V ( x ) ) .  

We check that for all A E W 

Consider the map L , ,  of W 

Lv,,(A*)A+ A*Lv,,(A) Lv,,(A*A). 

Lv,,(1) = 0, therefore {exp(AL,,) 1 A E W'} is a semigroup of positive unity preserving 
transformations of 28, mapping by duality states into states. 

From ( 1 1 )  one has: 

3 0  F ( w ,  o exp(AL, , ) )  - F ( w p )  lim 
A -O+ A 

and by an  argument analogous to that in [13] one obtains the E E B  inequality (9). 
We remark that for infinite systems the EEB inequality (9) remains meaningful, 

although the variational principle should be reformulated in terms of the free energy 
density which limits the above derivation to space translation invariant states. 

At this point it is instructive to refer to the literature for other unified approaches 
of the classical and quantum equilibrium conditions. The idea in [8,9] consists of 
starting from the quantum mechanical K M S  equation in the form of Green functions: 

P v * v ( E ) / v , * v ( E )  = d ( E )  
where q5(E) = exp( P E ) ,  P ~ * ~ ( E )  is the Fourier transform of the function t + U (  WT), 
vveV(E) the Fourier transform of r + w (  V*V,) and  V, the time-evolved observab!es 
of V. Then other functions q5 are allowed in order to include what is called the classical 
K M S  condition for systems with a Poisson bracket structure: 

Pw(A{H, Bl) = w({A, B}) A, B observables (12) 

where { , } is the Poisson bracket. A distinction is made between classical and  quantum 
mechanical systems by choosing a different function q5 for the two different situations. 
This approach does not seem to be suitable for the treatment of coupled classical- 
quantum systems. 

The idea in [ lo]  is to take the point of view of the DLR equation, expressing that 
locally perturbed equilibrium states are absolutely continuous with respect to the 
unperturbed one, with a Radon-Nikodym derivative of the local Gibbs factor. The 
KMS condition is then rewritten in this spirit but without any pretention of treating 
coupled systems. 

It is evident that the EC equations (8) contain both the classical and  quantum 
aspects as expressed by DLR and K M S  conditions. The same holds for the EEB 
inequalities (9). In particular if the system is classical then the algebra d is reduced 
to the complex numbers and  the EC equation reduces to the DLR equations. If the 
system is purely a quantum system then the set X is trivial and h (  T )  = 0, the EC equation 
(8) reduces to the K M S  equation. Clearly, also the E E B  inequalities coincide with the 
classical or quantum correlation inequalities [ 14, 151 when the system is purely classical 
or quantal. 

We will avoid in this paper the explicit introduction of systems with a Poisson 
bracket structure because one  excludes in this way the classical lattice systems. The 
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EC equations and the EEB inequalities, however, are meaningful equilibrium conditions 
for both lattice systems and systems with a Poisson bracket structure. The equivalence 
of the classical KMS condition (12) with the DLR equations was studied in [3]. A 
heuristic argument to deduce equation (12) from the E E B  inequalities is 

p w ( A h ( ~ , ) )  3 w ( A )  l n ( w ( A ) / w ( f , A ) )  (13) 
where FS(A)=exp(s{B, - } ) A  S E R .  

Developing (13) with respect to the parameter s yields 

psw(A(B,  H } ) a  - s o ( { B ,  A } ) + O ( s 2 )  

for all values of s, straightforwardly yielding equation (12). 

4. Infinite systems 

For infinite systems the notion of the Gibbs state loses, strictly speaking, its meaning. 
However, the notions of the EC equation and the E E B  inequality remain meaningful. 
Here we aim at proving their equivalence also for infinite systems. 

We therefore suppose that we are given a derivation S and a relative Hamiltonian 
h satisfying the conditions (1)-(3). Moreover, we assume that 6 generates a strongly 
continuous one-parameter group { a ,  = exp(it6)l t E R} of *-automorphisms of B. 
Denoting for T E 9 

T , ( A ) = S ( A ) +  h (T- ’ )A  A € B  

we have the following lemma. 

Lemma 4.1. For T E  9, the map r, is exponentiable and defines a strongly continuous 
one-parameter group { a :  = exp(itr,) I t E R} of isometries of B. 

Proof: Since h (  7 - l )  E 3 the exponentiability of r, follows in a standard way [ 161 from 
the Dyson expansion. Indeed, for all A E 3, the series 

a , ( A ) +  5 ’  dt,  . . . jn”’-’ dtn a , - , ! ( h ( ~ - ’ ) ) .  . . a t - r , , ( h ( ~ - ’ ) ) a , ( A )  
n = i  n 

is norm convergent and defines exp(itr ,)  for t 3 0 (a similar expansion holds for t L 0). 
The group property and the strong continuity follow immediately. 

In order to prove the isometry property, consider A E 930: 

= S (  a : ( A ) ) a  ;( A ) *  + h ( 7 - l ) ~ ~  T(A)a :( A)* 

+ ~ : ( A ) G ( ~ : ( A ) * ) - ( Y ; ( A ) ( Y : ( A ) * ~ ( T - ’ )  

= (6  + [ h (  T - I ) ,  * I ) (  a : ( A ) a : ( A ) * ) .  

Using formula (3) 

I d  
7 - (a : (A )a : (A ) * )= (F16?) (a : (A )a~(A j * j .  
1 dt  
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Now that we have a strongly continuous one-parameter group { a  : 1 t E R} of isometries 
of W for each fixed T E 2 we are in a position to define a dense set 9T of analytic 
elements for the map r, (see [16], § 2.5.20). 

For all f~ CF(R) such that its Fourier transform f is of compact support, and  for 
all A E  W, we define 

A(f) = [ dtf(t)a:(A).  

Take now for W7 the linear span of the A(f) .  

a;, = exp(-pr , )  

Clearly 

is well defined on BT. 

Dejnition 4.2. 

there holds 
( i )  A state w of 9 satisfies the EC equation at /3 if for all T E  9 and A, B E  91T, 

w(F(AB)) = w(Ba:,(A)). (14) 

( i i )  A state w of W satisfies the E E B  inequality at /3 if for all T E 2 and A E Bo, 
domain of 8, there holds 

pw(A*r , (A) )  2 w(A*A) ln(w(A*A)/w( ;(AA*))). ( 1 5 )  

Theorem 4.3. A state w of W satisfies the EC equation at ,B iff it satisfies the EEB 

inequality at p. 

Boo$ Suppose first that w satisfies the EC equation at p, then in particular the EC 

equation (14) is satisfied for T the identity map where it reduces to the K M S  equation. 
It follows by the usual argument that the state w is a ,  invariant and  separating. Let 
( T ,  fl, X) be the G N S  triplet of the state w and define i=r by 

i= , (T(A)W = d T , ( A ) ) f l  A €  9. 

Then, using the a ,  invariance of w, 

( p 7 ( 4 A ) f l ) ,  ~ ( B ) f l )  = w(r , (A)*B)  

= w ( ( - 8 ( ~ * ) + ~ * h ( T - ' ) ) ~ )  

= w ( ~ * ( 8 ( ~ ) +  h ( T - ' ) ~ ) )  

= ( d A ) R ,  F T ( d B ) f l ) ) .  

= w(A*r , (B) )  
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As {T(A)SZIAE %'7} is a dense set of analytic vectors, r, is essentially self-adjoint on 
2. The EC equation becomes 

( r ( ? A ) n ,  ~ ( i B ) f l )  = ( T ( B * ) ~ ,  exp(-/3PT)T(A*)fl) 

By taking B = A  and using the Jensen inequality as in theorem 3.1, one obtains the 
EEB inequality for A E a7. Using the closedness of 8, one extends the inequality to %Io. 

Conversely suppose that the state w satisfies the EEB inequality, then as in the finite 
case it follows that w is separating and a ,  invariant: Consider again the G N S  representa- 
tion of the state and the corresponding operator r, on the representation space. 

As above, one proves that ?, is a self-adjoint operator with a dense domain of 
analytic vectors r(Z17)fl. One is now in a position to develop the usual arguments 
(see, e.g., [16] 0 5.3.1) to prove the EC equation. 

A, B E  Z17. 

To illustrate the type of systems and states which we consider here, we previously 
referred to the static Hubbard model [ 111. The equilibrium states of this model are 
very complicated and have not been computed explicitly so far. Therefore, we describe 
here a soluble model and  its equilibrium states which are easy, but nevertheless which 
d o  not simply factorise into classical and quantum parts. The model is a lattice of 
Ising spin particles in interaction with a one-mode quantised electromagnetic field. 
The local Hamiltonians are 

where a,, a: are Boson creation and annihilation operators and the a, are Ising spins. 
The configuration space X is now XIG ( 0 , l )  and the relevant C* algebra d is the 
CCR algebra generated by the Weyl operators 

w( f )=exp iC(J ; a :+&)  f E L 2 ( Z ) .  
I 

The Hamiltonian (16) is an unbounded operator and as such the model does not fit 
technically in the scheme discussed above. 

We compute the equilibrium states of this system. For each configuration x E X, 
consider the *-automorphism yx  of d: 

yx : a, -$ a,  - Aa, ( x )  

or  

Hence a Weyl operator is mapped to a product of a classical observable and the Weyl 
operator. Then 

f i t  = y , ( H , ( x ) ) =  - J  a , ( x ) a , ( x ) +  c (a:a,  - A 2 )  
,/ ) !E \ 

is reduced to the sum of a classical and  a quantum Hamiltonian. The equilibrium 
state vp  for the system fi, is clearly the product state: 

~p ( X W ( f ) )  = wf;'"'(X)wpB( w( j ) )  

for X E %(X), W(f)  E d and where w ~ R S ' " '  is the Ising equilibrium state and wp" the 
equilibrium state of the free Bose gas. 
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The equilibrium state w p  of the system (16) is then 

wp(XW(f)) = 77p(Y(XW(f))) 
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